
APPLICATION OF THE REGULARIZATION PRINCIPLE 

TO THE FORMULATION OF APPROXIMATE SOLUTIONS 

OF INVERSE HEAT-CONDUCTION PROBLEMS 

O. M. A l i f a n o v  UDC 536.24.01 

The synthesis  of a T ikhonov- regula r iz ing  a lgor i thm is  d i scussed  for  the solution of in tegra l  
equations in inverse  heat-conduct ion p rob l ems  of the f i r s t  kind. 

Many inverse  heat-conduct ion p rob l ems  entai l ing the de terminat ion  of t rans ien t  boundary conditions 
for  constant  the rmophys ica l  c h a r a c t e r i s t i c s  of a solid requ i re  the solution of l inear  Vo l t e r r a  in tegra l  equa-  
t ions of the f i r s t  kind: 

T 

A [u] = S u (g) K (~, g) dg = h(~), z --< ~, ~ ~< ~m, (1) 
Ta 

where  u(T) is the des i red  solution (unknown heat flux, t e m p e r a t u r e  at the boundary of the body, or  t h e rma l  
potential  density) and f6 is the input function, which is known with a ce r ta in  approximat ion 5. 

As an example  of this kind of p rob lem we consider  the de te rmina t ion  of the heat  flux admit ted to a s e m i -  
infinite body having a moving boundary and a ze ro -va lued  init ial  t e m p e r a t u r e  dis tr ibut ion:  

OT (x, ~) 02T (x, "0 - - a  , x>X(T) ,  ~ > % ,  (2) 
Or Ox 2 

T (x, %) = To(x), (3) 

T (x,, ~) = [ (~), (4) 

OT(X('O, "0 + q ( ~ ) = O ,  
Ox 

OT (co,  T) 
)~ - -0 ,  

Ox 

(5) 

where X(~-) is the known law governing the motion of the boundary (a continuous functiQn), T0(x) is a specif ied 
continuous different iable  function, and q(r is an unknown function. 

We reduce the p rob lem (2)-(5) to a ze ro -va lued  boundary condition. To do so we consider  a function 
~o(X), x >- C1 [C1 < X(T)], continuous together  with i ts  der iva t ive ,  such that ~0(x) ~- T0(x) for x >- X@ 0) (0T 0 
/0x-- 0 as x - ~ ) .  

It  is well  known [1] that the express ion  

" 1 

C 1 

is  a solution of Eq. (2) sa t is fying the init ial  condition. 

The reduced p rob l em  is now stated as follows: 

(x 4az-- ~1)2 1 ~ 0])d~l 

w (x, ~) = T (x, "0 - -  z (x, "Q, 
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a~ (r, T) o ~  (x, T) a , x>X(~) ,  ~ > % ,  
o'~ bx ~ 

~ ( x ,  ~o) = O, 

(x, ,  ~) = ~ (~) - z ( x .  "0, 

a~ ( x  (~), ~) + q (T) + ~ az ( x  (~), ~) _ o, 
8x Ox 

~ a ~ ( ~ ,  ~) = O. 
Ox 

We r e p r e s e n t  the function w(x, r) by means  of the t he rma l  potential  of a s imple  layer :  

= v (~) _ _  exp dg, 

go 

where v(r) is the t he rm a l  potential  density.  

The der iva t ive  8w(x, ~-)/ax is discontinuous at the boundary x = Xff):  

a ~  ( x  (~) + o, T) o~  ( x  (~), ~) ~ (~) 

8x 8x 2 

and its  l imi t ing value is  de te rmined  by the boundary condition. As a r e su l t  

Oz(X(,),T)a ~, {v(~) + i" X(~) X(~) 
q (~) - Ox ' 7 - 2 -  v (~) 2 V a~ (~ - ~) ~ 

"r 

• exp - -  4a (-c-- ~) 

The potent ial  densi ty  vff) must  be de te rmined  f r o m  the known function f(~-) by solving the following 
Vo l t e r r a  in tegra l  equation of the f i r s t  kind: 

T 

To 

(x , . -  X (~))2 ] d~ 
4a (x - -  ~) ] 

= f (~) - -  z ( x .  ~). 

T h i s  p rob lem is the mos t  complex  link in the r econs t ruc t ion  of the heat  flux in a semi- inf in i te  body 
with a moving boundary.  T h e  requ i red  function v0-) is unstable under per tu rba t ions  of the r igh t -hand  side 
due to the i n c o r r e c t n e s s  of the given p rob lem.  On the other  hand, inasmuch as the r igh t -hand  side is  
known with a ce r ta in  approximat ion ,  the solution v(-r) must  be cons is tent  with the accuracy  with which the 
input data a re  specif ied.  

An analogous p rob lem is met  in the solution of other  l inear  inverse  heat-conduct ion p rob l ems  [2-6]. 

We now synthesize  a r egu la r i z ing  a lgor i thm for  the solution of Eq. (1). We base  it on the genera l  
deviation pr inciple  developed by Morozov for  the solution of opera to r  equations by the regu la r iza t ion  method 
[7, 8]. 

Assuming  that the requ i red  function has a defirAte smoothness ,  we adopt as the admiss ib le  c lass  of 
solutions the Sobolev space Wn[To, ~-m] of genera l i73d-d i f fe :en t iab le  functions. We as sume  that the input 
data belong to the space L2[T0, ~'m] of functions inLegrable in the square .  We also a s sume  that  the in tegra l  
ope ra to r  with kerne l  K(~, ~) is defined on the ent i re  space W n and that an ope ra to r  AAr[u] uni formly  ap-  
p rox imat ing  the init ial  ope ra to r  has been cons t ruc ted ,  i . e . ,  that the following condition holds for  the n o r m  
of the di f ference of the ope ra to r s :  

where  n(Alr) ~ 0 as AT ~ O. 

Final ly ,  it is r equ i r ed  that the following inequality hold for  the deviat ion of the approximate  input 
data f rom the "exact"  data: 
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'gm 

If( ) - h( )l < 6. 
To 

We consider  the express ion 
T/r~ 

A = ~ {AA~ [ u ( t ) l -  f~(t)} ~ dr, 
T0 

in which fi is the solution of (1) corresponding to the "exact ~ r ight-hand f .  

By the tr iangular  rule we have 

TTn ~m 

T O TO 

- -  h(T)}~dt ~< • (At) ~ u~(t) dt + 6. 
To 

Normally for the solution of inverse heat-conduction problems it is always possible to approximate 
the operator  A with an accuracy such that 

(a~) << ~. 

We assume hereinaf ter ,  therefore ,  that 

A ~< 6. (6) 

Regarding (6) as a condition generat ing a set of formal  solutions u E W n of (1), we segregate f rom it 
the hmction usA~- real iz ing the lower bound of the functional 

t m n 
, 2  

'~o i=0 

Equation (7) corresponds  to the minimum deviation of the required  element UfAT from the element u* speci-  
fied in W n metr ic .  

The operator  A[u] is l inear and continuous, so that the stated problem is uniquely solvable [7, 9]. 
The sequence of approximate solutions in this case converges  strongly to the exact solution of (1): 

lim u ~  = u 
6 , A ~ 0  

in W~[T0, ~'m] whence we also infer their  uniform convergence together  with the derivat ives of order  up to 
and including (n--l). 

The formulated quadratic p rogramming  problem (6)-(7) is reduced to a problem in the form of the 
regular izat ion method of A. N. Tikhonov if we allow [9] for the fact that the function uaA T cor responds  to 
the s t r ic t  equality in condition (6). 

Invoking the method of Lagrange mult ipl iers ,  we ar r ive  at the following variat ional  problem: 
Tm 

~ / ~  To To 

Tm n 

To i=0 

in which a = 1/X (X is a Lagrange multiplier) is determined f rom the condition 

"~m T 

TD To 

Expanding the difference squared in the f i rs t  t e rm of (8) and changing the order  of integration over  
the t r iangular  domain, we obtain 
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Vm "~m v 

Trt z n 

- 2 .! h(r) K (~, ~1 u (~1 dr + ~ k~(~) [4 (0  - -  4 ' (0]  (~)~ } d~ 
i = O  

+ s f~ (r) ~r. (lO) 
"fro 

We wri te  the Eu le r  equation for  (10). We have as a r e su l t  

qTtr l "g "~trt T 

. [d~SK(% ~)K(% ~ ) u ( 0 d : + . l d r S K ( %  ~)K(% ~)u(~)d: 

~ m  tt  

- 2 ~ h(r) K (,, ~) dr + ~ { ~  ( - -  ~)%(~)(, (~) - -  4*(~)V)] (~,} = 0. 
i=0 

Noting that the domaIn of integrat ion for  the mult iple in tegra ls  has the fo rm of a r ec tangu la r  t rapezoid  
and changing the o rde r  of integrat ion,  we finally obtain 

T ~ m  

n 

+ a ~ ( - - ly  [k~(~) (u (~) - -  u*(~)q)]q)=0, (11) 
i = 0  

where 

T m 

~(~,  ~) = [ z< (r, ~) ~ (r, ~) ~r, 

"~m 

K~(~, ~) = ~ K (r, ~1 K (~, ~) d~:, 

-g(~) = .f h(r) K (r, ~) d~. 

The boundary conditions for  the solution of (11) a re  

u (r,~) = 4 ~ ,  u ' ( r~ )  = u;~ . . . . .  uI.~-l) ( ~ )  = ~-~. 

If  it is too difficult to specify the zeroth  approximat ion  to the requ i red  heat flux q@) [the surface  t e m -  
pe r a tu r e  TW(~) or  the t h e r m a l  potential  density v(~)], we can set  u*(~) = 0. In this case  we obtain the p r i -  
m a r y  r egu la r i zed  solution ula@). To obtain the next -h igher  approximat ion  we logically use ula@) as u*('r). 
We then obtain the secondary  regu la r i zed  solutionu2c~(~) , and so on. 

The upper  summat ion  l imit  in the second in tegra l  t e r m s  of (11) c o r r e s p o n d s  to the regu la r iza t ion  
o rde r .  If n = 0 (W 0 = L2) , then the square  deviation of the requ i red  solution f rom the given approximat ion 
is minimized.  In this case  the convergence  of the r egu la r i zed  approximat ions  does not n e c e s s a r i l y  imply 
the i r  uni form convergence .  In genera l ,  the number  n and t:he functions ki(}) have to be se lected on the bas i s  
of the spec i f ics  of the pa r t i cu la r  inverse  hea t - co t  auction p rob lem as well  as the exis t ing a p r io r i  information 
about the nature  of the requ i red  function. It  could be requ i red ,  for  example ,  that the solution have r e a s o n -  
able smoothness  in the sense  of min imiz ing  the expres s ion  [4, 10]. 

T m T m 

"go Ta 

The choice of approximat ion  to the requ i red  solution by the deviation pr inciple  r equ i r e s  knowledge of 
the e r r o r  of the init ial  data.  In L 2 m e t r i c  
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~rt~ 

6 ~ = ~ ~r~(~)d% 
~o 

where M'r) is the r m s  e r r o r  of the r ight -hand side of (1). 

If  ~r v a r i e s  appreciably  with t ime ,  it may prove convenient (for example ,  so as not to "oversmooth"  
the solution) to find the r egu la r i zed  approximat ions  by in te rva l s ,  in which cer ta in  ave rage  values  of a i are  

u (~) = 

del imited:  

u~(T) % ~< �9 -<. ~ ~, = i ( ~ ) ,  

u~(~) ~ ~ �9 -< ~ % = [ (%), 

: : : 

u~(~) ~_~ ~ ~-< ~ ~ = ~ (~) .  

We now consider  ce r ta in  aspec ts  of the compute r  implementa t ion  of the given method for  the solution 
of (1) in application to inverse  heat-conduct ion p rob l ems .  

Wri t ing the f in i te-di f ference  equivalent for  Eq. (11) in the genera l  case  and solving it for  known boun- 
dary  conditions,  we de te rmine  the grid function uaAT(7). However ,  a more  efficient  computat ion a lgor i thm 
can be obtained if we use for regular iza t ton  the approximat ion solution const ructed for  the d i rec t  p rob lem of 
computing T(xl,  ~') f r o m  a known function u0-) with allowance for  the possibi l i ty  of in tegrat ing K(7, ~) analy-  
t ical ly  on a se lec ted  in te rva l  (7i_ 1, r i ] .  

Thus,  for p rob lem (10) putting ~0 = 0, we can approximate ly  wri te  [7] 
n 

i ~ l  

where 

~ i - -  Vi-~'Vi-i ' Fn "~ [(Tn)--Z(Xl '  "On)' 
2 

r = V aA~ V - n  -~-- pi~* 2 v ~  - -  p) J"=i  

Consider ing the f i r s t - o r d e r  regu la r iza t ion  n = 1 for  (12) and choosing k 0 = 0 and k 1 = 1, we wri te  the 
f in i te -d i f ference  f o r m  of the flmctional (8): 

s  - 12 ~ (v-i-' - -  ~-~)2 (13) 

Setting the der iva t ive  with r e s p e c t  to ~i equal  to ze ro  and ass igning the boundary conditions 

~ ( 0 )  ~ v l  - - V o  O, --~ - O, - - = ~"('~m) ~'~ %` 
A~ h~ 

we a r r ive  at the following s y s t e m  of l inear  a lgebraic  equations with a s y m m e t r i c a l  posi t ive definite mat r ix :  

~at~v~ = Fh, = 1, 2 . . . . .  m, (14) k 
l ~ I  

in which 
rn  

a . ,  - A~ * ~ q~ q~?, l > k + 2, 
t z : l  

m 

ata=A~ ~ ? ~ - a ,  l = k + l ,  
n : l  

t n  

t n  

at l AT~ ~ ~n = ( l )  + ~ ,  / = 1 ;  m, 
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n 
Z ~. __ 

The number  a cor responding  to the bes t  approximat ion  of the solution in the se~se of a deviation in the fo rm 
of Eq. (9) is  found f rom the condition 

rn n 

t 
n~l i = I  

The a r b i t r a r i n e s s  in the designation of the boundary conditions for  the minimizat ion  of (13) n e c e s s a r i l y  
d i s to r t s  the f o r m  of the requ i red  function at the end points of the given t ime in terval .  However ,  as n u m e r i -  
cal  expe r imen t s  have shown, that d is tor t ion is confined to re la t ive ly  smal lne ighborhoods  of~- 0 and ~'m. 

A is 

a is 

f is 

q is 

T is 

u i s  

u* is 
X is 
x is 
c~ is 
6 is the 
A7 is the 
X is the 
v is  the 
"r is the 

NOTATION 

an in tegra l  opera tor ;  
the t he rm a l  diffusivity; 
the set  of input data; 
the heat flux; 
the absolute t e m p e r a t u r e ;  
the solution of the in tegra l  equation; 
a t r a i l  solution; 
the coordinate  of the moving boundary of the body; 
the instantaneous coordinate;  
the regu la r iza t ion  p a r a m e t e r ;  

e r r o r  of the input data; 
t ime step; 
t he rm a l  conductivity; 
t h e r m a l  potent ial  density;  
time~ 
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